Zastosowanie nowych tworzyw bakteriostatycznych w obiektach użyteczności publicznej

Literatura:

  1. Ross A.G.P., Olds G.R., Cripps A.W., Farrar J.J., McManus D.P. Enteropathogens and chronic illness in returning travelers. N. Engl. J. Med. 2013;368:1817–1825.
  2. Lin Y.S., Lee M.Y., Yang C.H., Huang K.S. Biomedical devices for pathogen detection using microfluidic chips. Curr. Proteom. 2014;11:116–120.
  3. Chan C.F., Huang K.S., Lee M.Y., Yang C.H., Wang C.Y., Lin Y.S. Applications of nanoparticles for antimicrobial activity and drug delivery. Curr. Org. Chem. 2014;18:204–215.
  4. Sun D., Shahzad M.B., Li M., Wang G., Xu D. Antimicrobial materials with medical applications. Mater. Technol. 2015;30:B90–B95.
  5. Siedenbiedel F., Tiller J.C. Antimicrobial polymers in solution and on surfaces: Overview and functional principles. Polymers. 2012;4:46–71.
  6. Jain A., Duvvuri L.S., Farah S., Beyth N., Domb A.J., Khan W. Antimicrobial polymers. Adv. Healthc. Mater. 2014;3:1969–1985.
  7. Desrousseaux C., Sautou V., Descamps S., Traore O. Modification of the surfaces of medical devices to prevent microbial adhesion and biofilm formation. J. Hosp. Infect. 2013;85:87–93.
  8. Kargupta R., Bok S., Darr C.M., Crist B.D., Gangopadhyay K., Gangopadhyay S., Sengupta S. Coatings and surface modifications imparting antimicrobial activity to orthopedic implants. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2014;6:475–495.
  9. Holban A.M., Iordanskii A., Grumezescu A.M., Bychkova A., Andronescu E., Mogoantă L., Mogoșanu G.D., Iordache F. Prosthetic devices with nanostructurated surfaces for increased resistance to microbial colonization. Curr. Pharm. Biotechnol. 2015;16:112–120.
  10. Francolini I., Donelli G., Crisante F., Taresco V., Piozzi A. Antimicrobial polymers for anti-biofilm medical devices: State-of-art and perspectives. Adv. Exp. Med. Biol. 2015;831:93–117.
  11. Zhang H., Chiao M. Anti-fouling coatings of poly(dimethylsiloxane) devices for biological and biomedical applications. J. Med. Biol. Eng. 2015;35:143–155.
  12. Liu L., Li W., Liu Q. Recent development of antifouling polymers: Structure, evaluation, and biomedical applications in nano/micro-structures. WIREs Nanomed. Nanobiotechnol. 2014;6:599–614.
  13. Ye Q., Zhou F. Antifouling surfaces based on polymer brushes. In: Zhou F., editor. Antifouling Surfaces and Materials. Springer; Berlin, Germany: 2015. pp. 55–81.
  14. Xue Y., Xiao H., Zhang Y. Antimicrobial polymeric materials with quaternary ammonium and phosphonium salts. Int. J. Mol. Sci. 2015;16:3626–3655. doi: 10.3390/ijms16023626
  15. Sedlarik V. Antimicrobial modifications of polymers. In: Chamy R., Rosenkranz F., editors. Biodegradation—Life of Science. InTech; Rijeka, Croatia: 2013. pp. 187–204.
  16. Martins A.F., Facchi S.P., Follmann H.D., Pereira A.G., Rubira A.F., Muniz E.C. Antimicrobial activity of chitosan derivatives containing n-quaternized moieties in its backbone: A review. Int. J. Mol. Sci. 2014;15:20800–20832.
  17. Deka S.R., Sharma A.K., Kumar P. Cationic polymers and their self-assembly for antibacterial applications. Curr. Top. Med. Chem. 2015;15:1179–1195.
  18. Strempel N., Strehmel J., Overhage J. Potential application of antimicrobial peptides in the treatment of bacterial biofilm infections. Curr. Pharm. Des. 2015;21:67–84.
  19. Alves D., Olívia Pereira M. Mini-review: Antimicrobial peptides and enzymes as promising candidates to functionalize biomaterial surfaces. Biofouling. 2014;30:483–499.
  20. Mohamed M.F., Hammac G.K., Guptill L., Seleem M.N. Antibacterial activity of novel cationic peptides against clinical isolates of multi-drug resistant Staphylococcus pseudintermedius from infected dogs. PLoS ONE. 2014;9:1578.
  21. Lopez-Meza J.E., Ochoa-Zarzosa A., Barboza-Corona J.E., Bideshi D.K. Antimicrobial peptides: Current and potential applications in biomedical therapies. BioMed Res. Int. 2015;2015
  22. Aquino R.P., Auriemma G., Mencherini T., Russo P., Porta A., Adami R., Liparoti S., Della Porta G., Reverchon E., del Gaudio P. Design and production of gentamicin/dextrans microparticles by supercritical assisted atomisation for the treatment of wound bacterial infections. Int. J. Pharm. 2013;440:188–194.
  23. Hornyák I., Madácsi E., Kalugyer P., Vácz G., Horváthy D.B., Szendrői M., Han W., Lacza Z. Increased release time of antibiotics from bone allografts through a novel biodegradable coating. BioMed Res. Int. 2014;2014.
  24. Su L.C., Xie Z., Zhang Y., Nguyen K.T., Yang J. Study on the antimicrobial properties of citrate-based biodegradable polymers. Front. Bioeng. Biotechnol. 2014;2.
  25. Macha I.J., Cazalbou S., Ben-Nissan B., Harvey K.L., Milthorpe B. Marine structure derived calcium phosphate-polymer biocomposites for local antibiotic delivery. Mar. Drugs. 2015;13:666–680.
  26. Trivedi T.J., Rao K.S., Kumar A. Facile preparation of agarose-chitosan hybrid materials and nanocomposite ionogels using an ionic liquid via dissolution, regeneration and sol-gel transition. Green Chem. 2014;16:320–330.
  27. Brooks B.D., Sinclair K.D., Grainger D.W., Brooks A.E. A resorbable antibiotic-eluting polymer composite bone void filler for perioperative infection prevention in a rabbit radial defect model. PLoS ONE. 2015;10:1578.
  28. El-Gendy N., Qian J., Eshelman K., Rivera M., Berkland C. Antibiotic activity of iron-sequestering polymers. Biomacromolecules. 2015;16:1480–1488.
  29. Noimark S., Weiner J., Noor N., Allan E., Williams C.K., Shaffer M.S., Parkin I.P. Dual-mechanism antimicrobial polymer–ZnO nanoparticle and crystal violet-encapsulated silicone. Adv. Funct. Mater. 2015;25:1367–1373.
  30. Wang H., Liu H., Chu C., She Y., Jiang S., Zhai L., Jiang S., Li X. Diffusion and antibacterial properties of nisin-loaded chitosan/poly (l-lactic acid) towards development of active food packaging film. Food Bioprocess Technol. 2015;8:1657–1667.
  31. Kuplennik N., Tchoudakov R., Zelas Z.B., Sadovski A., Fishman A., Narkis M. Antimicrobial packaging based on linear low-density polyethylene compounded with potassium sorbate. LWT Food Sci. Technol. 2015;62:278–286.
  32. Busila M., Musat V., Textorbc T., Mahltigd B. Synthesis and characterization of antimicrobial textile finishing based on Ag:ZnO nanoparticles/chitosan biocomposites. RSC Adv. 2015;5:21562–21571.
  33. Jang Y.S., Amna T., Hassan M.S. Nanotitania/mulberry fibers as novel textile with anti-yellowing and intrinsic antimicrobial properties. Ceram. Int. 2015;41:6274–6280.
  34. Markovic D., Milovanovic S., Radeti M., Jokic B., Zizovic I. Impregnation of corona modified polypropylene non-woven materialwith thymol in supercritical carbon dioxide for antimicrobialapplication. J. Supercrit. Fluids. 2015;101:215–221.
  35. Winkel A., Dempwolf W., Gellermann E., Sluszniak M., Grade S., Heuer W., Eisenburger M., Menzel H., Stiesch M. Introducing a semi-coated model to investigate antibacterial effects of biocompatible polymers on titanium surfaces. Int. J. Mol. Sci. 2015;16:4327–4342.
  36. Fu T., Li Y., Thaker H.D., Scott R.W., Tew G.N. Expedient synthesis of SMAMPs via click chemistry. ACS Med. Chem. Lett. 2013;4:841–845.
  37. Kuroda K., Caputo G.A. Antimicrobial polymers as synthetic mimics of host-defense peptides. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2013;5:49–66.
  38. Thaker H.D., Cankaya A., Scott R.W., Tew G.N. Role of amphiphilicity in the design of synthetic mimics of antimicrobial peptides with Gram-negative activity. ACS Med. Chem. Lett. 2013;4:481–485.
  39. Takahashi H., Palermo E.F., Yasuhara K., Caputo G.A., Kuroda K. Molecular design, structures, and activity of antimircobial peptide-mimetic polymers. Marcomol. Biosci. 2013;13:1285–1299.
  40. Liu R., Chen X., Chakraborty S., Lemke J.J., Hayouka Z., Chow C., Welch R.A., Weisblum B., Masters K.S., Gellman S.H. Tuning the biological activity profile of antibacterial polymers via subunit substitution pattern. J. Am. Chem. Soc. 2014;136:4410–4418.
  41. Choi H., Chakraborty S., Liu R., Gellman S.H., Weisshaar J.C. Single-cell, time-resolved antimicrobial effects of a highly cationic, random nylon-3 copolymer on live Escherichia coli. ACS Chem. Biol. 2016;11:113–120.
  42. Gomes A.P., Mano J.F., Queiroz J.A., Gouveia I.C. Incorporation of antimicrobial peptides on functionalized cotton gauzes for medical applications. Carbohydr. Polym. 2015;127:451–461.
  43. Vasile B.S., Oprea O., Voicu G., Ficai A., Andronescu E., Teodorescu A., Holban A. Synthesis and characterization of a novel controlled release zinc oxide/gentamicin-chitosan composite with potential applications in wounds care. Int. J. Pharm. 2014;463:161–169
  44. Fisher L.E., Hook A.L., Ashraf W., Yousef A., Barrett D.A., Scurr D.J., Chen X., Smith E.F., Fay M., Parmenter C.D., et al. Biomaterial modification of urinary catheters with antimicrobials to give long-term broadspectrum antibiofilm activity. J. Control. Release. 2015;202:57–64.

Czytaj więcej:
Medycyna 186
COVID-19 190
Nauka 124

Jami
Jami

Wysłany: 2020-04-03 14:04:20

Bardzo to dobre przy sporadycznym kontakcie z ludzkim ciałem. Natomiast przy przeznaczeniu do częstego kontaktu, jak na przykłąd w odzieży, powinno się dokłądnie zbadać odległe skutki.

Nore
Nore
*.173.104.155

Wysłany: 2020-04-05 07:51:06

Idea zrozumiała, jednak do praktycznej realizacji niezbędne jest wykonanie wielu testów trwałości i skuteczności działania materiału w warunkach realnych, nie tylko laboratoryjnych. Przeskalowanie pożądanego efektu od probówki do funkcjonalnego pokrycia wymaga wielu kosztownych badań. Biofilmy bakteryjne mają różną charakterystykę i nie ma złotego środka działającego na każdy z nich. Parametry takie jak homogeniczność warstwy, grubość, ścieralność i wiele, wiele innych muszą zostać określone. Pomysł brzmi ciekawie, tylko czy to nie aby slogan reklamowy?